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Structure of the select  function

Replace name_of_dataset with the variable storing your dataset and column1,
column2, and so on with actual names of the columns you want to keep.

select(name_of_dataset, column1, column2, ...)
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Using the pipe %>%  operator

We will need a convenient way to write out a sequence of data transformations

The symbol %>% is called the pipe operator, and it is available for you to use after
running library(tidyverse)

presidential %>%  
  select(name, party)
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Chaining transformations with %>%

Apply the sequence of functions transform1, transform2, transform3, and
transform4 to the data frame stored in a variable named data.
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data %>%
  transform1() %>%
  transform2(input1, input2) %>%
  transform3(input3) %>%
  transform4()
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Chaining transformations with %>%

Apply the sequence of functions transform1, transform2, transform3, and
transform4 to the data frame stored in a variable named data.

Using %>% shows the order of transformations in a clear and readable format.

If we didn't use the pipe operator, then our code would look this way instead:

data %>%
  transform1() %>%
  transform2(input1, input2) %>%
  transform3(input3) %>%
  transform4()

transform4(transform3(transform2(transform1(data), input1, input2), input3))
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