
Data transformation

The pipe %>% operator

These slides are licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0

International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Structure of the select function

Replace name_of_dataset with the variable storing your dataset and column1,
column2, and so on with actual names of the columns you want to keep.

select(name_of_dataset, column1, column2, ...)

2 / 6

Using the pipe %>% operator

We will need a convenient way to write out a sequence of data transformations

3 / 6

Using the pipe %>% operator

We will need a convenient way to write out a sequence of data transformations

The symbol %>% is called the pipe operator, and it is available for you to use after
running library(tidyverse)

3 / 6

Using the pipe %>% operator

We will need a convenient way to write out a sequence of data transformations

The symbol %>% is called the pipe operator, and it is available for you to use after
running library(tidyverse)

select(presidential, name, party)

3 / 6

Using the pipe %>% operator

We will need a convenient way to write out a sequence of data transformations

The symbol %>% is called the pipe operator, and it is available for you to use after
running library(tidyverse)

presidential %>%
 select(name, party)

4 / 6

Chaining transformations with %>%

Apply the sequence of functions transform1, transform2, transform3, and
transform4 to the data frame stored in a variable named data.

5 / 6

Chaining transformations with %>%

Apply the sequence of functions transform1, transform2, transform3, and
transform4 to the data frame stored in a variable named data.

data %>%
 transform1() %>%
 transform2(input1, input2) %>%
 transform3(input3) %>%
 transform4()

5 / 6

Chaining transformations with %>%

Apply the sequence of functions transform1, transform2, transform3, and
transform4 to the data frame stored in a variable named data.

Using %>% shows the order of transformations in a clear and readable format.

data %>%
 transform1() %>%
 transform2(input1, input2) %>%
 transform3(input3) %>%
 transform4()

5 / 6

Chaining transformations with %>%

Apply the sequence of functions transform1, transform2, transform3, and
transform4 to the data frame stored in a variable named data.

Using %>% shows the order of transformations in a clear and readable format.

If we didn't use the pipe operator, then our code would look this way instead:

data %>%
 transform1() %>%
 transform2(input1, input2) %>%
 transform3(input3) %>%
 transform4()

transform4(transform3(transform2(transform1(data), input1, input2), input3))

5 / 6

License

Acknowledgments
Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International

Ideas and examples for the dplyr demos adapted from Modern
Data Science with R by Benjamin Baumer, Daniel Kaplan, and
Nicholas Horton, chapter 4.

Credits

6 / 6

https://creativecommons.org/licenses/by-nc-sa/4.0/

