

Data distributions

Quantifying data distributions in R

These slides are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Example data distribution

The following distribution comes from data posted by the US Census Bureau:

Example data distribution

The following distribution comes from data posted by the US Census Bureau:

How can we quantify the shape of this distribution?

You can follow along by downloading and loading the dataset by placing the following *setup* code block at the top of a R Markdown file.

```
```{r setup, include = FALSE}
Load required packages
library(tidyverse)
Load datasets
county <- read_rds(url("http://data.cds101.com/county_complete.rds"))
````</pre>
```

Useful statistical functions

The following R functions will be useful for computing basic statistical measures of any numerical data column (variable)

- mean(): Computes the average
- median(): Computes the median
- min(): Finds the minimum value
- max(): Finds the maximum value
- sd(): Computes the standard deviation
- IQR(): Computes the interquartile range
- percent_rank(): Computes percentiles

Using the statistical functions

Every function except percent_rank() will always return a single quantity

The summarize() function is appropriate here:

```
county %>%
summarize(
    mean = mean(mean_work_travel),
    median = median(mean_work_travel),
    min = min(mean_work_travel),
    max = max(mean_work_travel),
    sd = sd(mean_work_travel),
    iqr = IQR(mean_work_travel)
)
```

mean	median	min	max	sd	iqr
22.72558	22.4	4.3	44.2	5.514159	7.1

Using the statistical functions

percent_rank() operates on the full column of values, so it needs to be paired with
mutate()

Once we have the percentiles, we can find the cutoff value for each percentile

Q1	Q2	Q3	Q4
19	22.4	26.1	44.2

Using the statistical functions

percent_rank() operates on the full column of values, so it needs to be paired with
mutate()

Once we have the percentiles, we can find the cutoff value for each percentile

Q1	Q2	Q3	Q4
19	22.4	26.1	44.2

Interpreting summary statistics: mean, sd

One standard deviation above and below the mean

Interpreting summary statistics: median, IQR

The median and inter-quartile range

Boxplot of the data

To create a boxplot for this dataset:

```
ggplot(county) +
  geom_boxplot(
    mapping = aes(
        x = "",
        y = mean_work_travel
    )
    ) +
    xlab("") +
    ylab("average work travel time (min)")
```


Boxplot of the data

To create a boxplot for this dataset:

- The aes function in geom_boxplot requires both x and y for inputs
- x should be a categorical variable, y should be a numerical variable
- If you only want to plot a single boxplot, then
 set x = ""

Credits

License

Creative Commons Attribution-NonCommerical-ShareAlike 4.0 International